無機分析前処理基礎講座

無機分析のための三種の神器「湿式分解」+「乾式分解」+「融解法」必勝法

ジーエルサイエンス株式会社

無機分析前処理講座

無機分析のための三種の神器

「湿式分解」+「乾式分解」+「融解法」

ジーエルサイエンス株式会社

無機分析プロダクト テクニカルプロデューサー 古庄義明

本日の講演内容

- 1. 無機分析のための前処理方法の種類を知る
 - a. 乾式分解(乾式灰化)の基礎
 - b. 湿式分解(湿式灰化)の基礎
 - c. 融解法(アルカリ融解)の基礎
- 2. 分析対象試料別アプローチを知る
 - a. 水系試料(上水、環境水、排水、汚水)
 - b. 固形試料(食品、生体試料、環境試料)
 - c. 原料試料(セメント、セラミック、樹脂)
- 3. 三種法を組み合わせた必勝法を理解する
 - a. 乾式+湿式を組み合わせて安価に前処理を構築する
 - b. 開放系湿式分解+密閉系湿式分解の併用で時間短縮
 - c. 融解法で難酸分解試料、再沈殿試料を攻略する
 - d. 「湿式分解法+融解法」x「固相抽出法」=脱塩濃縮クリーンアップ
- 4. まとめ

本日の講演内容

- 1. 無機分析のための前処理方法の種類を知る
 - a. 乾式分解(乾式灰化)の基礎
 - b. 湿式分解(湿式灰化)の基礎
 - c. 融解法(アルカリ融解)の基礎
- 2. 分析対象試料別アプローチを知る
 - a. 水系試料(上水、環境水、排水、汚水)
 - b. 固形試料(食品、生体試料、環境試料)
 - c. 原料試料(セメント、セラミック、樹脂)
- 3. 三種法を組み合わせた必勝法を理解する
 - a. 乾式+湿式を組み合わせて安価に前処理を構築する b. 開放系湿式分解+密閉系湿式分解の併用で時間短縮
 - c. 融解法で難酸分解試料、再沈殿試料を攻略する
 - d. 「湿式分解法+融解法」×「固相抽出法」=脱塩濃縮クリーンアップ
- 4. まとめ

試料分解方法

乾式分解(乾式灰化)

バーナー直接加熱、電気加熱炉 マイクロ波アシスト乾式灰化システム(石英るつぼ)

湿式分解(湿式灰化)

開放系還流分解

ホットプレート+コニカルビーカー+時計皿、 ヒートブロック+分解チューブ+時計皿 ケルダール分解装置

密閉系加圧分解

ステンレスジャケット式テフロン密閉分解容器 ポリプロピレンジャケット式テフロン密閉分解容器 マイクロ波アシスト自動加圧分解装置

融解法

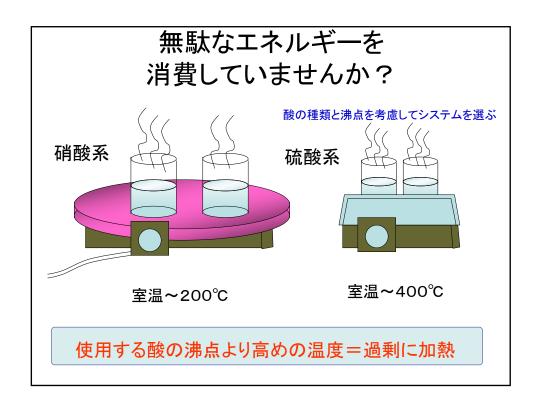
白金、グラファイトるつぼを使った融解法 バーナーによる直接過熱か、電気加熱炉

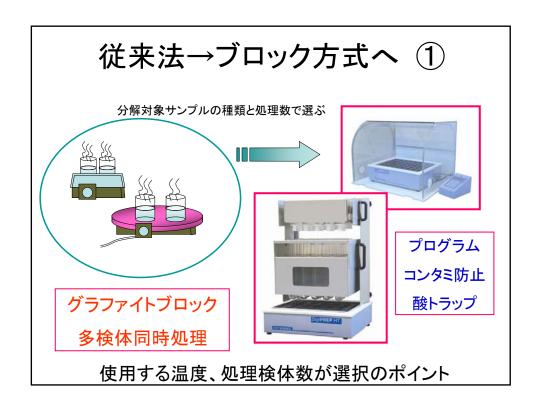
1-a. 乾式分解の基礎

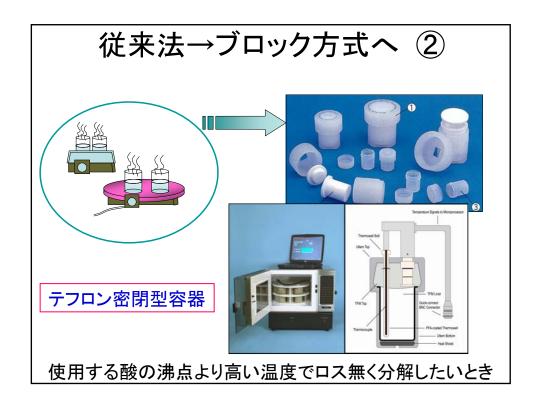
乾式分解の種類と選択を知る

乾式分解システムの種類と特徴を知る

1-b. 湿式分解法の基礎


酸分解製品の種類と選択を知る


酸の種類と特徴、酸分解の注意点を知る


酸分解製品の種類と選択

酸分解製品の種類と選択のポイント

- -分解に使用する酸の種類と沸点で
- 分解対象サンプルの種類と処理数で
- -分解後の測定手法で

分解ユニットのポイント

分解に適した酸の種類、温度

分解に適した容器、システム

1-b. 湿式分解法の基礎

酸の種類と特徴、酸分解の注意点を知る

酸分解における酸の働き

酸の種類	酸化力	特徴
塩酸	1	酸化力は無い。Hよりイオン化傾向が高い物を溶解。 還元力を有す。CIが金属と錯化体形成。Sn、Sb、Te 安定
硝酸	0	多くの金属の溶解に向く。AI、Crの溶解時不動態化。 Sn、Sb、Teなどは加水分解をおこし沈殿発生。
硫酸	Δ	濃硫酸は酸化力があり、希硫酸は酸化力がない。高温での 濃硫酸はきわめて強力。粘性が高い。沸点が高い。
過塩素酸	0	常温では酸化力が無く、高温で極めて強い酸化力を有す。 グラファイトの分解。爆発性で危険。硝酸存在下で使用する。
フッ酸	_	ガラスなどのケイ酸化合物の分解に有効。酸化力はないので、 硝酸と併用する。Fが金属と錯化体を形成。W、Mo、Ti安定。
王水	0	市販の濃塩酸と濃硝酸の混合液。 塩酸:硝酸=3:1 酸化力高い。貴金属の溶解に向いている。

最適分解温度と分解容器

酸の種類	最適分解温度 ℃	最適分解容器	備考
HCI	80 以下	PP, テフロン ガラス、石英	80℃以下でPP製のDigiTUBEsを用いて湿式 灰化処理が可能。
HNO ₃	80 – 120	PP, テフロン ガラス、石英	80-110℃でPP製のDigiTUBEsを用いて湿式灰化処理が可能。
H ₂ SO ₄	230 以上	ガラス、石英	高温で脱水、強い有機物分解作用を利用。 230℃以上で強力な酸化力。沸点高い。
HF	95以下	PP、テフロン	ガラス、石英を腐蝕するので容器に注意。
HCI/HNO₃	95-110	PP、テフロン ガラス、石英	王水(塩酸3:硝酸1)は強い酸化分解が可能
H ₂ SO ₄ /HNO ₃	1 st 200以上 2 nd 80-120	ガラス、石英	硫硝酸処理を200℃以上で行ってから、硝酸を 追加し、120℃以下で硝酸処理を行う。
HNO3/HCIO4	145 – 200	ガラス、石英	最も強力な酸の組み合わせ。必ず硝酸存在下で使用する。単独使用は爆発性があり危険。

参考資料: ぶんせき p213, (5) 2006, SCP SCIENCE Application Guide, SII Nanotechnology 無機分析セミナー要旨

濃酸の取り扱い 注意点

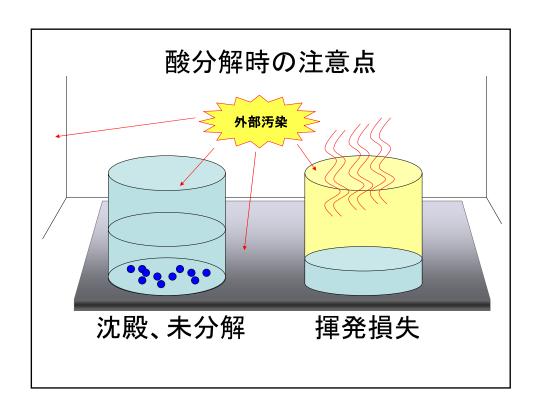
	塩酸	硝酸	硫酸	フッ酸	過塩素酸
濃度(%)	38	70 (60)	97	50	60
規定度(N)	12	16(14)	36	27	9
およその沸点 (°C)	110	120	320	70	200
酸化∙還元	弱い還元力	酸化力	高温で酸化力	なし	高温で 強い酸化力
発ガス性	高	高	低	高	低
皮膚障害	あり	あり	あり 加熱時強力	あり ^{希釈しても強力}	あり 加熱時強力
沈殿元素	Ag, Hg など	Cr, Ti など	Ba, Pb, Cr など	Y, Al など	Nb, W, Mn など
揮発元素	As, Sn, Se など			Ge, Si など	
備考	金属酸化物や過酸化物の溶解性に優れる	金属の溶解に優れる が、金属酸化物や過 酸化物には向かない。	水と混和で発熱 粘度高い 低沸点の酸の除去に	ガラス、W、Moの溶 解に優れる。金属と錯 化塩を形成	有機物の分解に優れ るが単独使用は危険

参考資料: ぶんせき p213, (5) 2006, SCP SCIENCE Application Guide, SII Nanotechnology 無機分析セミナー要旨

分解容器の特徴と注意点

	ほう珪酸ガラス	石英	PP(DigiTUBEs)	PFA, PTFE, TFM	白金ルツボ
分解液の視認性	0	0	0	×	×
分解温度	~ 450	~ 450	~ 130	~ 250	~ 1000
硫酸乾固	0	0	×	×	0
熱伝導性	0	0	0	Δ	00
強い浸食薬品	HF	HF	一部溶剤、臭素	_	王水
弱い浸食薬品	強アルカリ	強アルカリ	高温での 濃硝酸、王水	_	S
長期保管不可	pH10以上	pH10以上	エーテル	_	_
メソッドブランク	Si, Na, K, B	Si	_	_	Pt などの貴金属
汚れやすさ	0	0	Δ	_	_
洗いやすさ	0	0	Δ	Δ	×
表面処理	0	0	Δ	×	×
撥水性	Δ	Δ	0	0	0
価格	安価	非常に高価	非常に安価	高価	非常に高価
備考	突沸しやすい 破損しやすい	突沸しやすい 破損しやすい	高温使用時 120℃以上で変形	250℃以上で変形 300℃以上で有毒ガス	汚れ汚染時は 再生処理必要

参考資料: ぶんせき p213, (5) 2006, SCP SCIENCE Application Guide, SII Nanotechnology 無機分析セミナー要旨


DigiTUBEsを用いた塩酸、硝酸の規定度調製

市販 HCI 12Nの場合		市販 HNO3 14Nの場合		市販 H2SO4 36Nの場合	
0.1N	0.42	0.1N			0.14
0.2N	0.83	0.2N	0.71	0.2N	0.28
0.5N	2.1	0.5N	2.78	0.5N	0.69
1N	4.2	1N	3.5	1N	1.4
2N	8.4	2N	7.2	2N	2.8
4N	16.7	4N	24.3	4N	5.6
6N	25	6N	21.4	6N	8.3

DigiTUBEs に市販の酸を () mL 計量して 50 mLにメスアップ すればよいか

参考資料: ぶんせき p213, (5) 2006, SCP SCIENCE Application Guide, SII Nanotechnology 無機分析セミナー要旨

酸分解時の注意事項

酸分解時、未溶解物が確認されるときは

分析目的元素が未溶解に なっている可能性あり

目的元素が吸着、共沈、包含されている可能性あり

未溶解等はフィルターなどでろ別する。

再溶解処理の検討や融解法を用いて完全分解する。

目的元素の混入を確認し、無視できる物かどうか検証する。

外部汚染に注意する

試薬 水

容器 実験環境

硫酸、リン酸の使用

粘度が高

ICPには向かない

参考資料: ぶんせき p213, (5) 2006, SCP SCIENCE Application Guide, SII Nanotechnology 無機分析セミナー要旨

分解時の元素の揮発について

酸の種類	揮発のおそれのある元素
塩酸-硫酸	P, S, As, Bi, B, Ge, Te, Tl, Se, Sb, Sn, Re, Mo, Zn
フッ酸ー過塩素酸	Si, B, Ge, As, Sb, Cr, Se, Os, Ru, Re
塩酸-過塩素酸	Bi, B, Zn, No, Te, Tl, Sb, As, Cr, Ge, Os, Re, Ru, Sn

As(III) 塩酸酸性、硫酸乾固時に揮発損失しやすい

As(V) 過マンガン酸カリウムなどの酸化剤存在下で揮散しにくい

参考資料: ぶんせき p213, (5) 2006, SCP SCIENCE Application Guide, SII Nanotechnology 無機分析セミナー要旨

分解時の難溶性化合物沈殿

酸の種類	沈殿のおそれのある元素
硫酸	Ba, Pb, Sr, Cr
塩酸	Ag, Pb
硝酸	Sb, Sn, W, Mo, Zr, Ti 不動態皮膜生成 Be, Al, Cr, Mn, Fe, Co, Ni, Mo, W
フッ酸	Al, Ca, Mg, 希土類元素

参考資料: ぶんせき p213, (5) 2006, SCP SCIENCE Application Guide, SII Nanotechnology 無機分析セミナー要旨

酸分解ポイント

マトリックスを分解

目的元素の測定を 妨害しない

目的元素を溶液化

揮発、沈殿、加水分解 定量性↓ メソッドブランク 定量性↓

1-c. 融解法の基礎

融解法の種類と試薬を知る

融解で使用されるルツボの使い方を知る

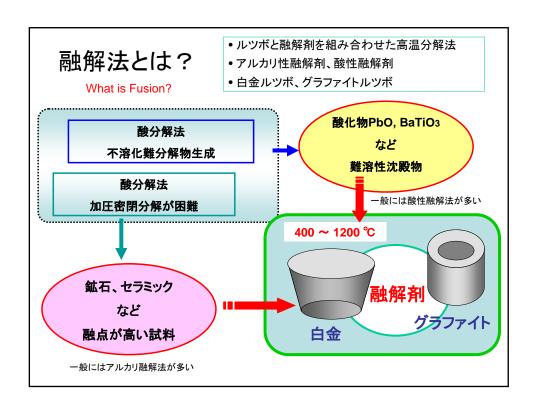
こんな経験はありませんか?

こんな時、ガラスビードやアルカリ融解は便利

酸分解をいろい ろ検討したけど

沈殿発生

ケルダール分解 を検討したけど

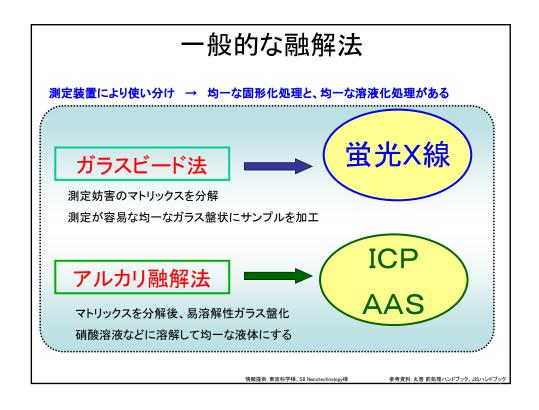

長時間

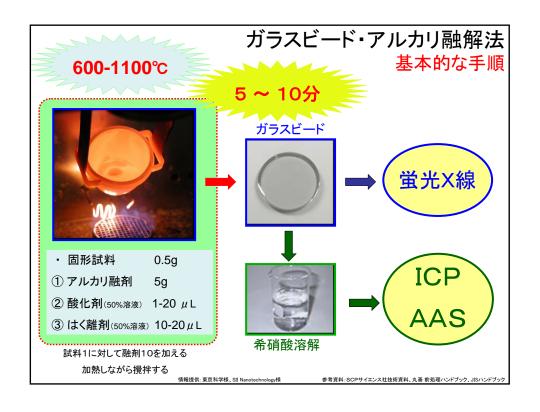
マイクロウェーブ を検討したけど

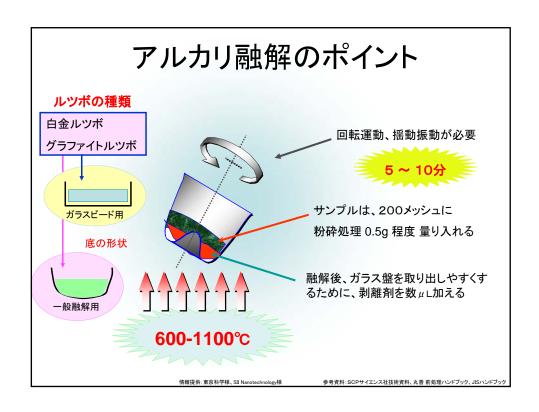
未分解

ICP測定なので 硫酸使いたくない

XRF測定するとき マトリックスの影響を受ける




融解方法について


- 酸で分解が困難な試料に
- 酸分解時に再析出化した沈殿物、未分解物
- 融解後→ガラスビードロ化→酸に易溶解
- 融剤の添加は、試料1に対し5~10
- 融解温度500℃~1000℃
- 温度制御は、ガスバーナー、高温電気炉
- 融解で使う試薬のブランクに注意する
- 専用装置などを用いて安全性を確保する

情報提供:東京科学様、SII Nanotechnology様

参考資料:丸善 前処理ハンドブック、JISハンドブック

代表的な融解の種類

サンプル	融解メソッド(JIS等)
1. 有機ケイ素化合物	1st Step 硫酸、硝酸で有機物処理 2nd Step 炭酸Naで融解処理
2. ケイ酸塩類(岩石など)	試料0.5gに過酸化Na 4g + 炭酸Na 1g 電気加熱炉等で1100℃で融解処理
3. アルミナ系	試料0.5gに炭酸Na 3g + 四ホウ酸リチウム 2g 電気加熱炉等で1000℃で融解処理
4. 窒化ケイ素	試料0.3gに炭酸Na 2g + 四ホウ酸リチウム 3g 電気加熱炉等で1000~1150℃で融解処理

酸化剤 : LiNO3 、KNO3

はく離剤 : LiBr (Lithium Bromide 高純度試薬 Cat. 8500-11935)、Lil(ヨウ化リチウム) 融解剤 : LiT (四ホウ酸リチウム: Lithium Tetraborate Pure Cat. 8500-11925)

LiT (Lithium Tetraborate Utra Pure Cat. 8500-11936)

情報提供:東京科学様、SII Nanotechnology様

参考資料:丸善 前処理ハンドブック、JISハンドブック

代表的な融解の種類 - 補足 -

融解の種類	融解剤	対象試料例	よく使う ルツボ
炭酸Na	Na2CO3 Na2CO3 + K2CO3	ガラス、石灰石 珪酸塩岩塩	Pt Ni
水酸化アルカリ	NaOH KOH	酸化チタン、酸化スズ 炭化ケイ素、Ru、Ir	Ni Zr
過酸化ソーダ	Na ₂ O ₂ Na ₂ O ₂ +Na ₂ CO ₃	酸化クロム、酸化スズ フェロシリコン、鉄鉱石 フェロクロム、Ru、Ir	Ni Zr
ホウ酸塩	Li2B4O7 H3BO3 + Na2CO3	高シリカ含有試料、アルミナ	Pt
酸性融解	K ₂ SO ₇	金属酸化物	Pt

情報提供:東京科学様、SII Nanotechnology

参考資料:丸善 前処理ハンドブック、JISハンドブック

代表的な融解剤

	融剤種類	利用 頻度	保存性	市販 高純度	備考
1	四ホウ酸リチウム(Li 2B4O7)	0	0	0	融点915℃ ISIJ基準
2	メタホウ酸リチウム(LiBO2)	Δ	Δ	0	
3	四ホウ酸ナトリウム(Na ₂ B ₄ O ₇)	0	×		融点878℃ ISIJ基準
4	無水ホウ酸(B ₂ O ₃)		0		
5	炭酸リチウム(Li ₂ CO ₃)	0	0		融点 618℃
6	炭酸リチウム+四ホウ酸リチウム				
7	炭酸リチウム+ホウ酸(H3BO3)				
8	四ホウ酸リチウム+メタホウ酸リチウム	Δ	Δ	0	混合比 8:2 または 2:8
9	四ホウ酸リチウム+炭酸ナトリウム				
10	ホウ酸バリウム(BaB4O7)		0		

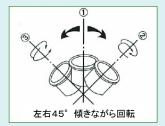
注)ISIJ=日本鉄鋼協会

情報提供:東京科学様、SII Nanotechnology様

参考資料:丸善 前処理ハンドブック、JISハンドブック

ジーエルサイエンス提供 高純度融解剤

SCP SCIENCE XRF Fusion Fluxes Series


品名	グレード	数量	型式	Cat.No.
Lithium Tetraborate (LiT)	Pure	1Kg	040-060-200	8500-11925
Lithium Tetraborate (LiT)	Ultra Pure	1Kg	040-060-205	8500-11936
Lithium Metaborate (LiM)	Pure	1Kg	040-060-100	8500-11926
Lithium Metaborate (LiM)	Ultra Pure	1Kg	040-060-102	8500-11927
LiT / LiM = 50/50	Pure	1Kg	040-060-250	8500-11928
LiT / LiM / LiBr = 49.75 / 49.75 / 0.5	Pure	1Kg	040-060-249	8500-11929
LiT / LiM = 67 / 33	Pure	1Kg	040-060-267	8500-11930
LiT / LiM / LiBr = 66.67 / 32.83 / 0.5	Pure	1Kg	040-060-266	8500-11931
LiT / LiM / LiI = 66.67 / 32.83 / 0.5	Pure	1Kg	040-060-268	8500-11934
Lithium Bromide (LiBr)	はく離剤	15mL	040-060-330	8500-11935

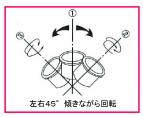
Lithium Tetraborate (LiT): 四ホウ酸リチウム Lithium MetaBorate (LiM): メタホウ酸リチウム Lil: ヨウ化リチウム LiBr: 臭化リチウム

アルカリ融解の効率化=自動化 ルツボの種類 自金ルツボ グラファイトルツボ 両タイプに対応 図転運動 揺動振動が重要 多段昇温で 酸化処理と融解処理を自動処理 600-1100℃

ガラスビード・アルカリ融解の自動化

- ステップ昇温タイムプログラム
- 自動攪拌(揺動&回転)機能
- JIS白金ルツボ対応
- グラファイトルツボ対応
- 冷却機能
- 自動排気機能

情報提供:東京科学様


参考資料:丸善 前処理ハンドブック、JISハンドブック

高周波自動溶融装置の紹介

- XRF測定、AAS・ICP測定の前処理として便利
- ・ 理想的な加熱構造→溶融効率化+抜群のはく離性
- 高周波加熱方式採用→短時間多数試料調製
- 揺動回転加熱方式採用→完璧な撹拌と脱泡。
- 二段加熱構造、多段加熱方式→溶融促進
- コンパクト構造、易操作性、容易なメンテナンス
- 溶融条件は全て目視可能
- 最適条件を設定し自動操作により安全性を確保

詳細情報 東京科学株式会社 www.tokyo-kagaku.co.jp

情報提供:東京科学様